Morse-Smale Complexes for Piecewise Linear 3-Manifolds

Vijay Natarajan

Duke University

Joint work with

H. Edelsbrunner, J. Harer, and V. Pascucci

Problem

Given Morse function $f: M^3 \rightarrow R$

Morse-Smale complex is a topological structure partitioning space into regions of unifom gradient flow

Define Morse-Smale complexes and give an algorithm to construct them for piecewise linear data

Motivation

Morse function $f: M^3 \rightarrow R$

X-ray crystallography

MRI

Lattice dislocation

electron density

proton density

atom density

Critical Points

Ascending/Descending Manifolds

Ascending manifold: Points with common origin.

Descending manifold: Points with common destination.

Ascending manifolds partition space

Morse-Smale Complex

Morse-Smale Complex

A *cell* is a connected component of points with common origin and destination

Continuous to Piecewise Linear

- Input: tetrahedral mesh, density at vertices
- Quasi Morse-Smale complexes
 - same combinatorial property

cells monotonic and non-crossing

 Critical points characterized by lower link

1-saddle + 2-saddle

Construction

- 0. Sort Vertices
- Downward sweep
 descending 1- and 2-manifolds
- 2. Upward sweep ascending 1- and 2-manifolds
 - + intersection curves
 using descending structure

High Level Operations

- Starting (at 1-saddles)
- Extending (at all vertices)
- Gluing (at minima)

Desc arc construction

START DISK

- i. Construct shortest path tree of ocean rooted at lowest vertex *q*
- ii. Discard non-tree edges by repeated edge-triangle collapse
- iii. Choose edge that minimizes cycle length
- iv. Add triangles from p to fill disk

Disk Invariant: Interior edges always directed towards unfrozen boundary vertices

⇒ no interior edges between unfrozen boundary vertices

EXTEND DISK

- i. Compute shortest path tree rooted at q
- ii. Trace paths from a and b to q
- iii. Add triangles to extend disk

Disk Invariant: Interior edges always directed towards unfrozen boundary vertices

⇒ no interior edges between unfrozen boundary vertices

EXTEND DISK

- i. Compute shortest path tree rooted at q
- ii. Trace paths from a and b to q
- iii. Add triangles to extend disk

Simultaneous Construction

At *p* :

- 1.1. Start β_1 desc disks
- 1.2. Prepare $(\beta_0 1)$ asc disks
- 1.3. Extend desc disks touching *p*
- 1.4. Start $(\beta_0 1)$ desc arcs
- 1.5. Extend desc arcs touching p

 $\beta_0 = 2$ oceans

 $\beta_1 + 1 = 2$ continents

Ascending Manifolds

- Intersection curves
- Ascending arcs
- Ascending quadrangles

Simulating Disjointness

- Normal interval
 - order disks passing through a triangle
- Normal disk
 - order disks and arcs passing through an edge

Future Work

- Quasi to final complex
 - generalize handle slides from [EHZ 2001]
- Hierarchy
 - cancel pairs of critical points ordered by persistence [ELZ 2000] [EHZ 2001]
- Implementation
- Applications

UCRL-PRES-154074

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.